GMM和SAW諧振器復合磁傳感器設計與分析
磁場測量在醫學、軍事、地質學等方面有廣泛的應用,是現代測量領域的重要組成部分。隨著材料技術的發展,磁致伸縮材料被用作磁場測量的敏感材料,成為磁傳感領域的重要研究內容。B.Frank等人通過在光纖上蒸發一層磁致伸縮材料,由磁致伸縮引起光纖內光傳播的光程發生變化,可以得到較高的磁場測量精度,但該結構極大地破壞了光纖干涉臂內光場偏振態的穩定性,從而使整個光纖弱磁場傳感器的穩定性變差。2005年N.Yoshiza-wa等人研究了用非晶態鐵磁薄帶和石英/LiNbO3復合的磁傳感結構,最高可達60 Hz/Oe的頻率/磁場靈敏度,可用于地磁場測量。而Dong等人研究了用壓電材料和磁致伸縮材料復合,利用磁電效應來測量磁場,可以達到10-9T以上的精度,但該磁電復合材料不適合測量靜態的磁場。
本文將具有極高磁致伸縮效應的GMM和SAW諧振器復合,利用磁場影響GMM產生的大應力應變,作用于SAW諧振器上影響其諧振頻率,從而進行磁場測量。該傳感器結構簡單、成本低,對磁場敏感,可用于靜態和動態磁場測量。由于SAW諧振器本身可以用作無源無線傳感,因此該復合傳感器還可以作為無源、無線磁傳感器使用。
2 復合傳感結構
圖1是SAW諧振器和GMM復合結構的示意圖。在螺栓螺母的作用下GMM、SAW諧振器和硬質剛體材料框架緊密接觸。框架同時起導軌作用,限制SAW諧振器和Terfenol-D只能在長度方向發生形變。調整螺栓的長度可調節施加在超磁致伸縮材料上的預應力,使其在磁場中獲得較大的磁致伸縮。
GMM選用工作在33模式下的Terfenol-D(Tb0.37Dy0.63Fe2),在沿長度方向磁場的作用下,在同方向產生伸縮。由于兩端被緊固,Terfenol-D材料的應力和應變將導致SAW諧振器的諧振頻率發生變化。通過檢測SAW諧振器諧振頻率的變化,可測得外部磁場大小。
3 理論分析
以GMM伸長時,其與SAW諧振器(SAWR)的接觸面向右運動為例,得到受力分析如圖2所示。F和F1是結構兩端受到緊固結構和框架的反作用力;CT,vT,TT,AT分別代表GMM的力阻、振動速度、內部應力和橫截面積;Cs,vs,Ts,As是SAW諧振器基片的力阻、振動速度、內部應力和橫截面積;CTvT和Csvs是由于振動阻尼引起的材料內部的阻力。
本文將具有極高磁致伸縮效應的GMM和SAW諧振器復合,利用磁場影響GMM產生的大應力應變,作用于SAW諧振器上影響其諧振頻率,從而進行磁場測量。該傳感器結構簡單、成本低,對磁場敏感,可用于靜態和動態磁場測量。由于SAW諧振器本身可以用作無源無線傳感,因此該復合傳感器還可以作為無源、無線磁傳感器使用。
2 復合傳感結構
圖1是SAW諧振器和GMM復合結構的示意圖。在螺栓螺母的作用下GMM、SAW諧振器和硬質剛體材料框架緊密接觸。框架同時起導軌作用,限制SAW諧振器和Terfenol-D只能在長度方向發生形變。調整螺栓的長度可調節施加在超磁致伸縮材料上的預應力,使其在磁場中獲得較大的磁致伸縮。
GMM選用工作在33模式下的Terfenol-D(Tb0.37Dy0.63Fe2),在沿長度方向磁場的作用下,在同方向產生伸縮。由于兩端被緊固,Terfenol-D材料的應力和應變將導致SAW諧振器的諧振頻率發生變化。通過檢測SAW諧振器諧振頻率的變化,可測得外部磁場大小。
3 理論分析
以GMM伸長時,其與SAW諧振器(SAWR)的接觸面向右運動為例,得到受力分析如圖2所示。F和F1是結構兩端受到緊固結構和框架的反作用力;CT,vT,TT,AT分別代表GMM的力阻、振動速度、內部應力和橫截面積;Cs,vs,Ts,As是SAW諧振器基片的力阻、振動速度、內部應力和橫截面積;CTvT和Csvs是由于振動阻尼引起的材料內部的阻力。
文章版權歸西部工控xbgk所有,未經許可不得轉載。