設計開關電源時防止EMI的措施
作為工作于開關狀態的能量轉換裝置,開關電源的電壓、電流變化率很高,產生的干擾強度較大;干擾源主要集中在功率開關期間以及與之相連的散熱器和高平變壓器,相對于數字電路干擾源的位置較為清楚;開關頻率不高(從幾十千赫和數兆赫茲),主要的干擾形式是傳導干擾和近場干擾;而印刷線路板(PCB)走線通常采用手工布線,具有更大的隨意性,這增加了PCB分布參數的提取和近場干擾估計的難度。
1MHZ以內----以差模干擾為主,增大X電容就可解決
1MHZ---5MHZ---差模共模混合,采用輸入端并一系列X電容來濾除差摸干擾并分析出是哪種干擾超標并解決;5M---以上以共摸干擾為主,采用抑制共摸的方法.對于外殼接地的,在地線上用一個磁環繞2圈會對10MHZ以上干擾有較大的衰減(diudiu2006);對于25--30MHZ不過可以采用加大對地Y電容、在變壓器外面包銅皮、改變PCBLAYOUT、輸出線前面接一個雙線并繞的小磁環,最少繞10圈、在輸出整流管兩端并RC濾波器.
30---50MHZ普遍是MOS管高速開通關斷引起,可以用增大MOS驅動電阻,RCD緩沖電路采用1N4007慢管,VCC供電電壓用1N4007慢管來解決.
100---200MHZ普遍是輸出整流管反向恢復電流引起,可以在整流管上串磁珠
100MHz-200MHz之間大部分出于PFCMOSFET及PFC二極管,現在MOSFET及PFC二極管串磁珠有效果,水平方向基本可以解決問題,但垂直方向就很無奈了
開關電源的輻射一般只會影響到100M以下的頻段.也可以在MOS,二極管上加相應吸收回路,但效率會有所降低。
設計開關電源時防止EMI的措施:
1.把噪音電路節點的PCB銅箔面積最大限度地減小;如開關管的漏極、集電極,初次級繞組的節點,等。
2.使輸入和輸出端遠離噪音元件,如變壓器線包,變壓器磁芯,開關管的散熱片,等等。
3.使噪音元件(如未遮蔽的變壓器線包,未遮蔽的變壓器磁芯,和開關管,等等)遠離外殼邊緣,因為在正常操作下外殼邊緣很可能靠近外面的接地線。
4.如果變壓器沒有使用電場屏蔽,要保持屏蔽體和散熱片遠離變壓器。
5.盡量減小以下電流環的面積:次級(輸出)整流器,初級開關功率器件,柵極(基極)驅動線路,輔助整流器。
6.不要將門極(基極)的驅動返饋環路和初級開關電路或輔助整流電路混在一起。
7.調整優化阻尼電阻值,使它在開關的死區時間里不產生振鈴響聲。
8.防止EMI濾波電感飽和。
1MHZ以內----以差模干擾為主,增大X電容就可解決
1MHZ---5MHZ---差模共模混合,采用輸入端并一系列X電容來濾除差摸干擾并分析出是哪種干擾超標并解決;5M---以上以共摸干擾為主,采用抑制共摸的方法.對于外殼接地的,在地線上用一個磁環繞2圈會對10MHZ以上干擾有較大的衰減(diudiu2006);對于25--30MHZ不過可以采用加大對地Y電容、在變壓器外面包銅皮、改變PCBLAYOUT、輸出線前面接一個雙線并繞的小磁環,最少繞10圈、在輸出整流管兩端并RC濾波器.
30---50MHZ普遍是MOS管高速開通關斷引起,可以用增大MOS驅動電阻,RCD緩沖電路采用1N4007慢管,VCC供電電壓用1N4007慢管來解決.
100---200MHZ普遍是輸出整流管反向恢復電流引起,可以在整流管上串磁珠
100MHz-200MHz之間大部分出于PFCMOSFET及PFC二極管,現在MOSFET及PFC二極管串磁珠有效果,水平方向基本可以解決問題,但垂直方向就很無奈了
開關電源的輻射一般只會影響到100M以下的頻段.也可以在MOS,二極管上加相應吸收回路,但效率會有所降低。
設計開關電源時防止EMI的措施:
1.把噪音電路節點的PCB銅箔面積最大限度地減小;如開關管的漏極、集電極,初次級繞組的節點,等。
2.使輸入和輸出端遠離噪音元件,如變壓器線包,變壓器磁芯,開關管的散熱片,等等。
3.使噪音元件(如未遮蔽的變壓器線包,未遮蔽的變壓器磁芯,和開關管,等等)遠離外殼邊緣,因為在正常操作下外殼邊緣很可能靠近外面的接地線。
4.如果變壓器沒有使用電場屏蔽,要保持屏蔽體和散熱片遠離變壓器。
5.盡量減小以下電流環的面積:次級(輸出)整流器,初級開關功率器件,柵極(基極)驅動線路,輔助整流器。
6.不要將門極(基極)的驅動返饋環路和初級開關電路或輔助整流電路混在一起。
7.調整優化阻尼電阻值,使它在開關的死區時間里不產生振鈴響聲。
8.防止EMI濾波電感飽和。
文章版權歸西部工控xbgk所有,未經許可不得轉載。